
Proceedings of the Global Engineering, Science and Technology Conference 2012

 28-29 December 2012, Dhaka, Bangladesh

Secure Data Shredder

Vikram Bahl, David Leong, Guo Jiayan, Jonathan Siang and Tay Mei
Lan

In our current information explosion era, there are massive amounts of
confidential data belonging to individuals, companies and governments
residing on data storage devices. It is important to be able to securely and
irrevocably destroy this data before these devices are discarded or reused,
so that it cannot be extracted and exploited by malicious parties. There are
open source solutions available to destroy data permanently. However, they
are limited in their ability to provide a vast choice of data destruction
algorithms and have the constraint of supporting a single operating system.
This has inevitably led to a small group of pertinent users. In addition, they
are unable to destroy data on multiple storage devices at once, thus
relatively slowing down performance. In order to overcome these pitfalls, we
have developed an open source cross platform data shredding software that
could securely, rapidly and permanently destroy information stored on any
prevalent data storage device used in computers and embedded systems.
To ensure speedy processing, our application has provided the functionality
to wipe multiple storage devices concurrently. We have ensured that it
complies with the IEEE T10/T13 specifications and operates with no
limitations to the capacity of the storage media connected to the computer
system. We have implemented several techniques defined in various
proprietary standards to handle data remanence. We have also included a
selection of military grade data destruction procedures recommended by
renowned information security specialists. In order to serve users with
various operating systems, our application is interoperable in Windows, Mac
OS X and Linux environment. In comparison with other popular open source
solutions, our software is found to be secure, reliable, coherent and has the
ability to gratify large varieties of home and corporate users.

Field of Research: Computer Software and Application

1. Introduction

The proliferation of data storage devices per user for personal and corporate use has
resulted in copious amounts of personal and confidential information being digitally
stored across a number of storage devices. When this data is to be deleted, users
usually do so by employing commonly used methods depending on their operating
system, like pressing the Delete key on the keyboard and proceeding to remove the
item from the Recycle Bin or Trash folder. However, performing such an operation
on the data only removes it from the entries in the file system journals. While the
user may not be able to locate and access the data, the content still resides in
locations on the hard disk platter and is easily retrievable by commonly available
utilities (Wiles and Reyes, 2007). Deleted data does not disappear from the hard disk
abruptly until the user starts writing data over it. Reformatting of hard drives does not
eradicate data from the computers either.

Vikram Bahl, Republic Polytechnic, Singapore.Email vikram_bahl@rp.edu.sg
David Leong, Republic Polytechnic, Singapore. Email david_leong@rp.edu.sg
Guo Jiayan, Republic Polytechnic, Singapore. Email guo_jiayan@rp.edu.sg
Jonathan Siang, Republic Polytechnic, Singapore. Email jonathan_siang@rp.edu.sg
Tay Mei Lan, Republic Polytechnic, Singapore. Email tay_mei_lan@rp.edu.sg

2

It merely updates and refreshes the superblock depending upon the file system
format chosen upon reformatting (Deitel, 2004). The data cannot be located since its
entry from the file system table has been erased but it is recoverable since it still
resides on the disk media. Unskilled malicious hackers are able to retrieve files
(even those deleted a long time ago) using off-the-shelf data recovery tools that are
easily available on the Internet, for example, Recuva (Pirifrom, 2012) and TestDisk
(CGSecurity, 2012), thus allowing malicious parties access to confidential
information thought to be deleted by the user. In a day and age where data from
personal photographs, financial documents and passwords to sensitive information
relating to national security is digitally stored, it becomes imperative to ensure that
deleted data is securely and permanently erased from the storage device.

In a set of guidelines published by the National Institute of Standards and
Technology (NIST), users are advised to perform secure erase procedures, also
known as disk wiping or data shredding, on old reusable hard disks in order to
irrecoverably expunge digital data (NIST, 2006). We conducted a study on various
data destruction algorithms and found various military grade procedures proposed by
information security specialists (Gutmann, 1996; Gutmann, 2001). We also surveyed
some open source solutions to data destruction and found them to be limited in the
variety of destruction algorithms supported. They were also not cross-platform and
supported only a limited range of storage media. We then proceeded to design a
cross-platform, secure and comprehensive data destruction utility. The aim of this
paper is to present the methodology and capability of the data shredding software
developed by us. Our software is able to sanitize multiple hard disks and flash drives
simultaneously. Further, our application allows the user to permanently overwrite
data using predefined military grade data destruction algorithms. The ultimate goal of
our software is to annihilate all previous data entries and partitions, so as to make it
nearly impossible for a malicious user to recover any readable data that was
previously stored on the storage device.

2. Literature Review

The most common method employed by users to delete files from their system is to
press the Delete key and periodically empty the Recycle Bin or Trash folders. Users
then have a false sense of security that the data has been permanently deleted from
the system. However, the Delete key operation does not remove the data but only
the pointer to that data. If the entry in the file allocation table is removed or the inode
is removed from the inode table (Bach, 1986), the ‘deleted’ data remains on the
storage media as unallocated space until it is overwritten. Some users may also
choose to format their storage media. While this option may seem more secure and
permanent as compared to pressing the Delete key, it does not completely erase the
data from the hard disk. It only removes the reference to that data in the file system
journal. Data storage can be compared to a book with a large index at the beginning.
The index contains the chapter, topic and subject information which is a reference to
the actual data contained in the book. This index is managed by a file system like
NTFS or FAT. Upon formatting, the file system deletes this index and plants a fresh
journal entry making sure that the user is unable to locate the data. The ‘deleted’
data still resides on the hard disk, but the operating system shows it as free space.
The data can still be recovered by creating virtual pointers to ‘lost’ data. Other

3

methods to irrevocably destruct data include degaussing and physical destruction of
the hard drive. Degaussing exposes the magnetic storage media to a strong
magnetic field to scramble data stored on a magnetic tape/drive. The physical
destruction of storage media involves melting, pulverization, burning and incineration
of the disk (NIST, 2006). These two methods render the drive unusable, are
expensive and pose a threat to personal safety and put the environment at risk.
Software-based solutions for data destruction usually espouse overwriting existing
data with specific bit patterns. The US Department of Defence proposed a 3 passes
overwriting algorithm of zeroes, ones and a random bit pattern (Defense, 1995).
Peter Gutmann had also proposed a 35 passes overwriting algorithm that may
resolve the probable issues encountered in data remanence (Gutmann, 1996;
Gutmann, 2001). These methods could render the old or existing data unreadable.

3. Methodology

3.1 Data Destruction Algorithms

Our application allows the user to choose from 10 wipe methods for data destruction.
While each of the methods will completely destroy the data, the user has the option
of using multiple methods to wipe the disk. The details of the data destruction
methods are given in Table 1. Data destruction implies that the storage device from
which data is to be wiped is overwritten with a certain bit pattern a number of times.
Overwriting the storage device once with a bit pattern is called 1 pass. Usually, a
verification pass is done to ensure that correct data is overwritten. Table 1 gives an
overview of the algorithms implemented. Further, our software permits the user to
erase the disk with predefined patterns: 0x00, 0xFF and a random pattern.
Moreover, it also allows the user to define their own bit pattern supporting up to 30
ASCII characters.

Table 1: Overview of data destruction algorithms implemented

Data Destruction Algorithm Overwriting Pass Verification Pass

 British HMG IS5-Baseline Pass 1: 0x00 1

 British HMG IS5-Enhanced

Pass 1: 0x00
Pass 2: 0xFF
Pass 3: Random

1(on Pass 3)

 Russian GOST P50739-95
Pass 1: 0x00
Pass 2 : Random

0

 US Standard DOD 5220.22-M

Pass 1: 0x00
Pass 2: 0x01
Pass 3 : Random

3

 Canadian RCMP DSX

Pass 1: 0x00
Pass 2: 0x01
Pass 3 : Random

3

4

 Canadian RCMP TSSIT OPS-II

Pass 1, 3, 5: 0x00
Pass 2, 4, 6: 0x01
Pass 7: Random

1 (on Pass 7)

 German VSITR

Pass 1, 3, 5: 0x00
Pass 2, 4, 6: 0x01
Pass 7: Random

0

 Bruce Schneier's Algorithm

Pass 1: 0x01
Pass 2: 0x00
Pass 3-7: Random

0

Apart from the algorithms described in Table 1, the user is also given the option to
execute Peter Gutmann’s proposed algorithm that prescribes 35 overwrite passes
(Gutmann, 1996). In this scheme, passes 1-4 and 32-35 are random bit patterns
overwritten on the hard drive. Passes 5-31 are designed by taking into consideration
specific magnetic media encoding schemes. There is an underlying sequence to the
bit patterns for sequential passes. The bit pattern for Pass 6 is obtained by a bitwise
left shift rotate from Pass 5. This means that each bit in Pass 5
(010101010101010101010101) is shifted one place to the left to obtain Pass 6
(101010101010101010101010). This bitwise left shift is equivalent to doubling the
value of an integer number. Similarly, bitwise right shift is corresponding to halving
an integer number. Passes 7-9, 26-28 and 29-31 are bitwise right shift rotations. The
hexadecimal value for Passes 10-25 is to be increased by one for every pass (i.e.
from 0x00 to 0xFF). Table 2 gives an overview of the bit patterns used in Gutmann’s
algorithm.

5

Table 2: Bit patterns in Peter Gutmann's algorithm

3.2 Software Features and Supported Hardware

3.2.1 GUI

The main UI screen of our software is shown in Figure 1. The left pane shows a list
of storage devices mounted onto the operating system. The right pane shows a list
of available data destruction methods to be selected by user. In accordance with
standard UI design guidelines (Schneiderman, 2003), status and progress bars have
been included. Our application permits the user to generate reports after each wipe
operation to ensure security auditing as well as monitoring the performance of disk
I/O. Further, a disk viewer utility which allows the user to view the data content in the
disk sectors after each wipe pass is provided. This gives the user a clear visual
depiction of the data that has been overwritten. Detection and recognition of storage
devices, as well as the presentation of device information are emphasized in the
subsequent sections.

6

Figure 1: Application user interface depicting a variety of wiping algorithms

3.2.2 Extracting Device Information

Our application automatically scans through the computer system to identify the type
of operating system used when it is launched. The user is able to select individual
storage devices to view critical device information like the hard drive model, serial
number, firmware revision, capacity, total number of cylinders, heads, sectors, sector
size, total number of sectors available, maximum value of the Logical Block
Addressing (LBA) and many more. For the Windows platform, the Windows
Management Instrumentation (WMI) library is used to extract system information
from the storage device. WMI is Microsoft's implementation of the Web-Based
Enterprise Management (WBEM) and Common Information Model (CIM) standards.
Similarly, for the Linux platform, the commands fdisk and lshw are used to extract
detailed information of disk and hardware configuration in the computer system.

3.2.3 Generating Pseudo-Random Numbers

Many of the data destruction algorithms described in Section 3.1 use pseudo-
random numbers to overwrite data. We have utilized library calls which use the
Mersenne twister sequence (Makoto & Takuji, 1998) to generate pseudo-random
numbers. While this method is deterministic, it contains a few additional probability
distributions commonly used in scientific research, as well as a couple of

7

convenience functions to generate random data. A three pass wipe of alternating
zeroes and random numbers is sufficient for home users. However, military and
corporate data typically require at least 7 or more passes in order to elude any
possibility of data remanence (Gutmann, 1996; Gutmann, 2001).

3.2.4 Viewing Data Sectors

Our application provides a built-in Disk Viewer utility for data read-back verifications
to the user. This permits the user to view the content of any sector before and after
data wiping. For instance, the content of Volume Boot Record (VBR) from a 512 MB
USB flash drive, as shown in Figure 2, can be viewed by UTF-8 or ASCII encoding.
However for security reasons, functionality to edit data at specific byte position was
not provided.

Figure 2: Software disk viewing utility

3.2.5 Software Development Process

Our application was developed in the Python programming language. The user
interface was designed using wxPython, a set of Python bindings to the wxWidgets
library which is a cross-platform C++ GUI application framework. The advantage of
using wxPython is that it allows the user interface to be developed using the same
controls and themes as the system on which it is deployed. It can be rapidly
developed on one operating system and ported to another with minor changes

8

(Precord, 2010).The Model-View-Controller architecture (MVC) was used to design
the application. The software development lifecycle (SDLC) was divided into several
software modules each of which was developed concurrently and finally integrated.

3.2.6 Supported Hardware and Operating Systems

Table 3 lists the storage type, hardware and operating systems supported by our
software.

Table 3: Hardware, software and device support

Storage Type Support Up to 8 PATA/SATA/SCSI/SAS/USB hard drives, Solid State Drives,
NVRAM, CD/DVD drive, USB flash media.

Software Support Windows 8/7/Vista/XP, Red Hat Enterprise Linux 6.2, MAC OS X.

Device Support Laptop, Desktop PC, Workstation, Servers.

Minimum Sector/Block Size 512 bytes

Bootable Devices Flash drive, CD/DVD drive.

4. Experimental Results and Discussion

4.1 Managing Concurrency In Data Wiping

Due to slow disk I/O incurred on individual storage device during a wipe process, the
wipe operations are implemented using a concurrency approach. Multiple threads
are deployed by us to this effect. Threading is a technique to decouple tasks that
are not sequentially dependent. The threading module is engineered to fork
multithreads for the application to handle wipe operations on multiple storage
devices concurrently, thus improving performance.

4.2 Performance Testing and Optimization

Upon data shredding, the slack space in the hard disk was verified for data
remanence using the AccessData’s Forensic Toolkit FTK 4 software and no trace of
any old data was found. Furthermore, we computed the SHA-1 hash value of the
disk image and it coincided with the last wipe pattern performed by our software.
These validation tests have affirmed that the data destruction process we had
performed is secure.

Performance testing was carried out on a hard drive using a single overwrite pass.
Upon investigation, the performance bottleneck was identified to be at the disk I/O.
We concluded that wiping data sector-by-sector was too sluggish. We then
proceeded to improve the I/O performance by implementing block buffer optimization
technique. The wipe performance of our software improves drastically when the
buffer size escalates. However, buffer size larger than 32 KB does not yield further
improvement to the overall disk I/O performance. From these results, block wiping
technique with 32 KB buffer was adopted for subsequent iterations. The

9

experimental result of applying block buffer optimization in the enhanced version of
the data shredding software is shown in Figure 3.

Figure 3: Performance of disk I/O with various data block sizes

As indicated in Figure 4, adopting block buffer optimization improves the overall wipe
performance of the DoD 5220.22-M method on an 80 GB hard disk drive by at least
8 times when compared with the original version of the CBL Data Shredder software
written in C++ running exclusively on the Windows OS. The DoD 5220.22-M
algorithm was used for this testing because it is one of the more popular standard
used for data destruction (Speedie, 2009).

Figure 4: Performance of selected data destruction methods on an 80 GB hard disk drive using Windows 7 and Red Hat
Enterprise Linux 6.2

Besides incrementing the size of the write buffer, the Python interpreters’ dynamic
translation (Just-In-Time compiler or JIT) method was also used to improve the
runtime performance. The comparison of different data destruction methods on a
512 MB flash drive using Windows 7 and Red Hat Enterprise Linux (RHEL) 6.2 is
shown in Figure 5.

1000

1500

2000

2500

3000

3500

4000

2^12 2^14 2^16 2^18 2^20 2^22D
u

ra
ti

o
n

 t
o

 C
o

m
p

le
te

 1

P
as

s
(s

e
co

n
d

s)

Data Block (Bytes)

14.8 15.6

19.5 19.8

7.6 8.1
10.3 10.1

0

5

10

15

20

25

0xFF (1 Pass) DoD 5220.22-M BSA PGA

Sp
e

e
d

 U
p

Type of Wiping Algorithms

RHEL 6.2 Windows 7

10

Figure 5: Wipe performance of different data destruction methods on a 512 MB flash drive using Windows 7 and Red Hat
Enterprise Linux 6.2

4.3 Comparison with other Open Source solutions

Table 3 compared our software with DBAN (Horn, 2012) and HDDErase. These are
open source software commonly used for data destruction. However, DBAN
supports only five commonly used data destruction algorithms. Moreover, the
application has to be run at boot time. It denied users the opportunity to access their
computer. Our software has a user-friendly graphical user interface (GUI) and offers
a choice of ten different wiping algorithms inclusive of those that had been provided
by DBAN. In lieu of multiple data storage devices present in a computer, we have
engineered the software to sanitize multiple storage devices concurrently. The data

0

600

1200

1800

2400

3000

3600

4200

4800

6
1

6
2

6
2

1
2

3

1
7

9

1
8

0

1
9

0
 4
0

6

4
0

6

4
2

4

2
1

3
7

1
4

0

1
3

4

1
3

3

2
8

1

4
0

0

4
1

0

9
7

4

9
0

9

9
4

2

9
9

5

4
4

2
3

Ti
m

e
 t

o
 C

o
m

p
le

te
 (

se
co

n
d

s)

Type of Wiping Algorithms

Performance of Data Shredder

RHEL 6.2 Windows 7

11

destruction process runs as a background task, thus permitting users to work on
their computer.

Table 4: Comparison with other open source software

DBAN HDDErase Our Software

Operating Systems Windows, Linux Windows Windows, Mac OSX, Linux

Data Destruction Algorithm
Support

 DoD 5220.22-M

 RCMP TSSIT OPS-II

 Gutmann’s Algorithm

 Random Data

 Write Zero

 Secure Erase

 British HMG IS5-Baseline

 British HMG IS5-Enhanced

 DoD 5220.22-M

 RCMP TSSIT OPS-II

 RCMP DSX

 German VSITR

 Scheiner's Algorithm

 Gutmann's Algorithm

 Write Zero, One, Random

 Write custom bit pattern

GUI YES NO YES

Concurrently wipe multiple
devices

NO NO YES

Ability to handle bad/corrupt
hard disks

NO YES YES

5. Conclusion

We have developed data destruction software that ensures a secure and
irrecoverable method to media sanitization. Several industry grade data destruction
methodologies were incorporated in the application. In comparison with other open-
source alternatives, our application was found to be more resilient. It could also
support a wider choice of data destruction algorithms. Paid solutions may provide a
similar functionality in terms of the algorithms. However, on comparing the speed of
data destruction on an 80GB hard disk drive with the DoD 5220.22-M algorithm
(Defense, 1995), our solution was found to be eight times faster. Further, no traces
of deleted data were found upon verification with AccessData’s Forensic Toolkit
software and SHA-1 hash computations. Apart from ensuring cross-platform
portability to reach maximum users, the software works well on solid state drives,
non-volatile memory (NVRAM), USB flash drives, CD-RW/DVD-RW drives, as well
as PATA/SATA/SCSI/SAS hard disk drives residing on laptops, desktop PCs,
workstations, servers, and low-cost storage appliances. However, the application
needs to be sufficiently tested on magnetic tape drives, Fibre Channel drives, large
JBODs, NAS and SAN storage systems. Further investigations are desired if these
categories of storage devices are to be addressed in the near future.

12

References

Bach, M., 1986. The Design of the UNIX Operating System. s.l.:Prentice Hall.

CGSecurity, 2012. TestDisk. [Online]

Available at: http://www.cgsecurity.org/wiki/TestDisk

Defense, U. D. o., 1995. DoD 5220.22-M, s.l.: National Industrial Security Program

Operating Manual.

Deitel, H., 2004. Operating Systems. 3rd ed. s.l.:Pearson Prentice Hall.

Gutmann, P., 1996. Secure Deletion of Data from Magnetic and Solid-State Memory.

s.l., USENIX Association.

Gutmann, P., 2001. Data Remanence in Semiconductor Devices. Berkeley, USENIX

Association.

Horn, D., 2012. DBAN, Hard Drive Disk Wipe and Data Clearing. [Online]

Available at: http://dban.org/

Makoto , M. & Takuji, . N., 1998. Mersenne twister. ACM Transactions on Modeling

and Computer Simulation (TOMACS), 8(1), pp. 3-30.

NIST, 2006. Guidelines for Media Sanitization, s.l.: U.S. National Institute of

Standards and Technology.

Pirifrom, 2012. Recuva. [Online]

Available at: http://www.piriform.com/recuva

Precord, C., 2010. wxpython 2.8 Application Developmentt Cookbook. s.l.:Packt

Publishing.

Reyes, A. & Wiles, J., 2007. Cybercrime and Digital Forensics. s.l.:Syngress

Publishing.

Schneiderman, B., 2003. Strategies for Effective Human-Computer Interaction.

s.l.:Pearson/Addison Wesley.

Speedie, A., 2009. Choosing a secure Data Destruction Method, s.l.: Secure I.T.

Disposals Pvt. Ltd..

Technologies, C. D. R., 2012. Data Recovery by CBL Hard drive and RAID recovery.

[Online]

Available at: http://www.cbldatarecovery.com/

